1,693 research outputs found

    On the Role of Density Matrices in Bohmian Mechanics

    Full text link
    It is well known that density matrices can be used in quantum mechanics to represent the information available to an observer about either a system with a random wave function (``statistical mixture'') or a system that is entangled with another system (``reduced density matrix''). We point out another role, previously unnoticed in the literature, that a density matrix can play: it can be the ``conditional density matrix,'' conditional on the configuration of the environment. A precise definition can be given in the context of Bohmian mechanics, whereas orthodox quantum mechanics is too vague to allow a sharp definition, except perhaps in special cases. In contrast to statistical and reduced density matrices, forming the conditional density matrix involves no averaging. In Bohmian mechanics with spin, the conditional density matrix replaces the notion of conditional wave function, as the object with the same dynamical significance as the wave function of a Bohmian system.Comment: 16 pages LaTeX, no figure

    Bohmian Mechanics and Quantum Field Theory

    Full text link
    We discuss a recently proposed extension of Bohmian mechanics to quantum field theory. For more or less any regularized quantum field theory there is a corresponding theory of particle motion, which in particular ascribes trajectories to the electrons or whatever sort of particles the quantum field theory is about. Corresponding to the nonconservation of the particle number operator in the quantum field theory, the theory describes explicit creation and annihilation events: the world lines for the particles can begin and end.Comment: 4 pages, uses RevTeX4, 2 figures; v2: shortened and with minor addition

    A microscopic derivation of the quantum mechanical formal scattering cross section

    Full text link
    We prove that the empirical distribution of crossings of a "detector'' surface by scattered particles converges in appropriate limits to the scattering cross section computed by stationary scattering theory. Our result, which is based on Bohmian mechanics and the flux-across-surfaces theorem, is the first derivation of the cross section starting from first microscopic principles.Comment: 28 pages, v2: Typos corrected, layout improved, v3: Typos corrected. Accepted for publication in Comm. Math. Phy

    Progress towards an effective non-Markovian description of a system interacting with a bath

    Get PDF
    We analyze a system coupled to a bath of independent harmonic oscillators. We transform the bath in chain structure by solving an inverse eigenvalue problem. We solve the equations of motion for the collective variables defined by this transformation, and we derive the exact dynamics for an harmonic oscillator in terms of the microscopic motion of the environmental modes. We compare this approach to the well-known Generalized Langevin Equation and we show that our dynamics satisfies this equation

    On the Existence of Dynamics of Wheeler-Feynman Electromagnetism

    Full text link
    We study the equations of Wheeler-Feynman electrodynamics which is an action-at-a-distance theory about world-lines of charges that interact through their corresponding advanced and retarded Li\'enard-Wiechert field terms. The equations are non-linear, neutral, and involve time-like advanced as well as retarded arguments of unbounded delay. Using a reformulation in terms of Maxwell-Lorentz electrodynamics without self-interaction, which we have introduced in a preceding work, we are able to establish the existence of conditional solutions. These are solutions that solve the Wheeler-Feynman equations on any finite time interval with prescribed continuations outside of this interval. As a byproduct we also prove existence and uniqueness of solutions to the Synge equations on the time half-line for a given history of charge trajectories.Comment: 45 pages, introduction revised, typos corrected, explanations adde

    Maxwell-Lorentz Dynamics of Rigid Charges

    Full text link
    We establish global existence and uniqueness of the dynamics of classical electromagnetism with extended, rigid charges and fields which need not to be square integrable. We consider also a modified theory of electromagnetism where no self-fields occur. That theory and our results are crucial for approaching the as yet unsolved problem of the general existence of dynamics of Wheeler Feynman electromagnetism, which we shall address in the follow up paper.Comment: 32 pages, revised Introduction, typos correcte

    Bohmian Mechanics and Quantum Information

    Full text link
    Many recent results suggest that quantum theory is about information, and that quantum theory is best understood as arising from principles concerning information and information processing. At the same time, by far the simplest version of quantum mechanics, Bohmian mechanics, is concerned, not with information but with the behavior of an objective microscopic reality given by particles and their positions. What I would like to do here is to examine whether, and to what extent, the importance of information, observation, and the like in quantum theory can be understood from a Bohmian perspective. I would like to explore the hypothesis that the idea that information plays a special role in physics naturally emerges in a Bohmian universe.Comment: 25 pages, 2 figure

    Hypersurface Bohm-Dirac models

    Full text link
    We define a class of Lorentz invariant Bohmian quantum models for N entangled but noninteracting Dirac particles. Lorentz invariance is achieved for these models through the incorporation of an additional dynamical space-time structure provided by a foliation of space-time. These models can be regarded as the extension of Bohm's model for N Dirac particles, corresponding to the foliation into the equal-time hyperplanes for a distinguished Lorentz frame, to more general foliations. As with Bohm's model, there exists for these models an equivariant measure on the leaves of the foliation. This makes possible a simple statistical analysis of position correlations analogous to the equilibrium analysis for (the nonrelativistic) Bohmian mechanics.Comment: 17 pages, 3 figures, RevTex. Completely revised versio

    On the Incompatibility of Standard Quantum Mechanics and the de Broglie-Bohm Theory

    Full text link
    It is shown that the de Broglie-Bohm quantum theory of multi-particle systems is incompatible with the standard quantum theory of such systems unless the former is ergodic. A realistic experiment is suggested to distinguish between the two theories.Comment: A few technical changes incorporated in section V without any change in conclusion

    Atom-molecule Rabi oscillations in a Mott insulator

    Full text link
    We observe large-amplitude Rabi oscillations between an atomic and a molecular state near a Feshbach resonance. The experiment uses 87Rb in an optical lattice and a Feshbach resonance near 414 G. The frequency and amplitude of the oscillations depend on magnetic field in a way that is well described by a two-level model. The observed density dependence of the oscillation frequency agrees with the theoretical expectation. We confirmed that the state produced after a half-cycle contains exactly one molecule at each lattice site. In addition, we show that for energies in a gap of the lattice band structure, the molecules cannot dissociate
    • …
    corecore